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Abstract

Atomic fountain interferometry uses atoms cooled with optical molasses to
 µK, which are then launched in a fountain mode. The interferometer re-
lies on the nonlinear Raman interaction of counter-propagating visible light
pulses. We present models of these key transitions through a series of Hamil-
tonians. Our models, which have been verified against special cases with
known solutions, allow us to incorporate the effects of non-ideal pulse shapes
and realistic laser frequency or wavevector jitter.

 Motivation

The development of atomic interferometry in the early s made possible an al-
ternative method of highly sensitive gravity gradiometry. This sensitivity makes
“gravity imaging” possible. By observing how atomic particles behave in the pres-
ence of even weak gravitational fields, one can predict how a gravitational source’s
mass is distributed.

One instrument for precisely measuring gravitational effects is the gravity
gradiometer, which employs a pair of interferometers with common phase re-
lations. These gradiometers employ atomic interferometry (a kind of double-path
interferometry reminiscent of Mach-Zehnder interferometry) and are driven by
counter-propogating laser beams, which act on atoms that travel in a vacuum
pipe above a magneto-optical trap, causing energy-level transitions. Each laser
beam is responsible for a different transition: one for the transition between the
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ground state and an intermediate state and the other for the transition between
the intermediate level and an excited state. Research on Raman transitions has
enabled high-momentum transfer to atoms, which induces more substantial in-
terferometric effects and therefore makes interference patterns easier to observe
and measure.[] Understanding these transitions and their consequences better
will allow us to measure gravitation more accurately.

Figure 

We are interested in detecting small excess masses (>  kg) in moving vehicles
by differentiating their gravitational signatures from those of the vehicles (see
Figure ). Gravity gradiometers based on atomic-fountain interferometry are the
most sensitive bias-drift-free sensors available. The key innovation enabling their
high sensitivity is the use of Raman coupling to a high-~k intermediate state, which
makes interferometric effects more pronounced and therefore easier to measure.

 The Problem

. Microscopic understanding of basic interferometry

Cold atom interferometry exploits the fundamental wave-like nature of all parti-
cles. An important example of quantum mechanical interferometry is the atomic
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double-slit experiment, which demonstrates the wave nature of atomic particles
and the viability of exploiting this property in an interferometer.[] For example,
cæsium atoms at  µK have typical de Broglie wavelength of about . µm. This
high degree of quantum coherence that this results in enables sensors that depend
on quantum phase coherence.

. Atomic interferometry

The key to atomic fountain interferometry is the three short laser pulses fired at
the atoms after initial launch at approximately  m s−1. By analogy with Mach-
Zehnder interferometry, the π

2 -pulses are like beam splitters, separating and com-
bining the “paths”, and the π-pulse acts like a mirror (see Figure ). External
masses then perturb the momentum of the atoms through their Earth-gravity-
induced freefall trajectory. We measure the effect of that perturbation to infer
the mass distribution. The key property behind its function is the coupling of

Figure 

the atomic hyperfine states to the external momenta of the particles, allowing the
overall wave function to be expressed as

|φ(t)〉 = cos
(
Ωt

2

)
|g,~p〉+ e−i

π
2 eiφL sin

(
Ωt

2

)
|e, ~p+ ~~keff〉 ,

where φL is the acquired phase from interaction with the electromagnetic pulse
and the two kets are basis states formed by direct products between the hyperfine
states and particle momentum that span the wave function Hilbert space.[] For
the π

2 and π pulses, Ωt = π
2 and π, respectively. Interferometry is conceptually

driven, of course, by a separation and recombination of waves and the subsequent
measurement of their phases. In order to “separate” the particles’ wavefunctions,
one imparts an initial “kick” for the particles to take two different “paths”. A
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second kick reflects the paths, so that the particles begin to reconverge. A third
kick “combines” the paths again, so that the two waves’ phase difference may be
measured. (This is analogous to Mach-Zehnder interferometry, in which the π

2 -
pulses are comparable to beam splitters and the π-pulse acts like a mirror.) The
final measurement is of the resultant phase shift, which is essentially doppler
shift, given by ∆φ =~k · δ~x.

. The Raman transition

The driving “kicks” of the interferometer are imparted by laser pulses tuned to in-
duce Raman transitions, a two-step process that takes advantage of a high-energy
intermediate state: the atom absorbs photon of frequency ω1 to reach level |i〉
and emits photon of frequency ω2 to descend to state |e〉 (see Figure ). The
Doppler sensitivity is determined by the two transitions, each imparting momen-
tum proportional to its respective driving ω, and the total can be approximated
by ∆ωD ≈ 2~k · ~v.

Figure 

While ωeg is small, ω1 and ω2 can be made very large to transfer high momen-
tum transfer (about – times higher than with basic Rabi oscillation between
|e〉 and |g〉). This is because the first pulse stimulates an absorption, and the sec-
ond two emissions, so that ∆p � 2k2 to conserve momentum. This allows us to
detect gravitational perturbations of ∼− g, which effect phase perturbations
of approximately −–− radians (with visible light pulses driving the Raman
transitions), which is an easily measurable change. Note that with microwaves
(∼ GHz), the change is considerably smaller and not feasibly measurable.[] The
overall interferometer phase shift is given by ~k · δ~x(0)− 2~k · δ~x(T ) +~k · δ~x(2T ).
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. Impact of more realistic physics

Because laser sources do not have instant turn-on and turn-off, however, pulses
do not have the ideal square wave shape. The effect on the cold atoms, then, is
not quite what theoretical results following this assumption would predict. These
differences are not extremely large, since the motion of the atoms during the brief
turn-on and -off is not substantial (it takes about  µs), but they are still signif-
icant because of the atoms’ small wavelength.

We want to understand the impact of more realistic laser drive on the entan-
gling process used to set up the cold-atom interferometer, including finite pulse
turn-on and frequency jitter.

 Sequence of Hamiltonians

In order to gain a better understanding of the mechanisms behind the interferom-
eters, we model the system with a sequence of Hamiltonians of increasing com-
plexity. Starting from simple cases to gain intuitive insight into the behaviour of
the atomic states, we add more and more considerations to the problem, making
the model progressively more realistic and accurate, but at the same time, making
analytic solving more difficult.

In the simplest case, we consider only the excitation of the atoms:

Ĥ1 = ~ωg |g〉〈g |+ ~ωe |e〉〈e| , ()

where |g〉 is the ground state, |e〉 is the excited state, andωg ,ωe are their respective
characteristic frequencies. In this case, the atom has no external influences, and
so the eigenstates are the ground and excited states over all time. In a proper
chosen rotating frame, the wave function is then constant in time.

But once the external influence of the electromagnetic wave is explicit, the
atom’s state is no longer invariant through time:

Ĥ2 = Ĥ1 − ~d · ~E cosωt, ()

where ~d is the atomic electric dipole moment, and ~E,ω are the driving electro-
magnetic wave amplitude and frequency, respectively.

This approximation holds when the wavelength of the electromagnetic pulse is
much greater than the dimensions of the atomic beam. For optical frequencies and
sufficiently fast atoms, however, we must also account for the particles’ momenta:
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first we modify the term for the electromagnetic wave,

H̃2 = Ĥ1 − ~d · ~E cos(~k · ~x+ωt), ()

and then we add an appropriate momentum term,

Ĥ3 =
p̂2

2m
+ H̃2, ()

where ~k is the wave vector of the driving electromagnetic wave, ~x is the position
of the atom, and p̂ is its momentum operator.

Now we consider the case of two detuned electromagnetic waves, whose sys-
tem is described by a Hamiltonian with two terms for electromagnetic waves:

Ĥ4 =
p̂2

2m
+ ~ωg |g〉〈g |+ ~ωe |e〉〈e|+ ~ωi |i〉〈i|

− ~d ·
(
~E1 cos(~k1 · ~x+ω1t +φ1) + ~E2 cos(~k2 · ~x+ω2t +φ2)

)
. ()

With suitable assumptions, the above Hamiltonians can be solved analytically. We
can therefore compare numerical results to those analytical solutions.

Taking into account non-instant laser turn-on and finite laser drive, we modify
the electromagnetic wave terms to obtain

Ĥ5 =
p̂2

2m
+ ~ωg |g〉〈g |+ ~ωe |e〉〈e|+ ~ωi |i〉〈i|

− ~d ·
(
~E1(t)cos(~k1 · ~x+ω1t +φ1) + ~E2(t)cos(~k2 · ~x+ω2t +φ2)

)
. ()

Finally, a key effect still yet to be considered is the motion of the atoms in the
gravitational field as the laser turns on and off. We therefore add a gravitational
potential term, giving

Ĥ6 =
p̂2

2m
+mgh+ ~ωg |g〉〈g |+ ~ωe |e〉〈e|+ ~ωi |i〉〈i|

− ~d ·
(
~E1(t)cos(~k1 · ~x+ω1t +φ1) + ~E2(t)cos(~k2 · ~x+ω2t +φ2)

)
. ()

The treatment of this Hamiltonian, however, is outside of the scope of this report.
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 Results

Our goal is to solve the Schrödinger equation for these models without approxi-
mations, allowing us to study more realistic laser drive. We benchmark our nu-
merical technique against existing solutions for special cases. In predicting the
behaviour of the atoms, it is convenient to factor out the fast oscillation terms.
This allows us to observe the system from a rotating frame of reference, so that
the eigenfunctions of Ĥ1 are constant in time. Upon adding the external influence
of an electromagnetic wave (Ĥ2), however, the system evolves, with a non-trivial
wave function evolution (see Figure ).

Figure : Time evolution of the real (left) and imaginary (right) parts of the excited (blue) and
ground state (orange) wave functions. Dotted lines are analytical results from [].

We now consider the more complex case of counter-propagating waves – that
is, two laser pulses of different frequency travelling in opposite directions. The
system becomes considerably more complex, now being able to undergo Raman
transitions, so that the system is effectively three-level. It is possible, however, to
simplify the model in cases where the energy of the lasers is sufficiently high, so
that the system again becomes two-level (Ĥ4; see Figure ).

Our numerical results are in close agreement with analytical solutions, which
verify the validity of our simulations. Our models, then, offer a numerical al-
ternative to find solutions to the Schrödinger equation of more complex systems
(such as those with realistic laser drives – e.g., ~E(t), ~k(t)), where no analytic solu-
tions have yet been found. Let us now introduce a basic consideration: finite laser
wavetrain with gradual turn-on and turn-off. We model this by defining E(t) of
the form

E(t) =
( 1
π
arctanαt +

1
2

)( 1
π
arctan(−αt +αβ) + 1

2

)
.

Because the characteristic laser frequencies are typically much higher than the
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Figure : The evolution of the excited and ground state wave functions show the required Rabi
oscillations for interferometry.[]

reciprocals of the pulse lengths, however, the number of oscillations is extremely
high, making numerical calculations quite difficult for slower machines. Had we
access to more powerful machines, the full power of the numerical solution could
be realised. As such, therefore, we have chosen values such that the relative mag-

Figure : Orange and blue lines denote the complex coefficients of the ground and excited states
of the wave function. Darker dotted lines are the time evolution under an infinite wave train and
solid lines are time evolution under a finite pulse.

nitudes obey their real physical relation – i.e.,

ωe,ωg > ωeg > α >
1
β
,

where each inequality manifests a difference of at least an order of magnitude
in the simulation paramaters. Accordingly, we find that the change due to this
consideration is significant (see Figure ). Further confirmation for the reliabil-
ity of these models could come from investigating limiting cases of turn-on time
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to approach the infinite wave train ideal. With better resources, moreover, fu-
ture work can solve the problem with more physically realistic parameters, which
would give the desired numerical wave function solutions to this complex prob-
lem, which might otherwise be very difficult to solve analytically. Additionally,
the gravitational potential, while difficult to account for analytically, can also be
investigated numerically (Ĥ6).
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